Sparsity Conditional Energy Label Distribution Learning for Age Estimation

نویسندگان

  • Xu Yang
  • Xin Geng
  • Deyu Zhou
چکیده

By observing that the faces at close ages are similar, some Label Distribution Learning (LDL) methods have been proposed to solve age estimation tasks that they treat age distributions as the training targets. However, these existent LDL methods are limited because they can hardly extract enough useful information from complex image features. In this paper, Sparsity Conditional Energy Label Distribution Learning (SCE-LDL) is proposed to solve this problem. In the proposed SCE-LDL, age distributions are used as the training targets and energy function is utilized to define the age distribution. By assigning a suitable energy function, SCELDL can learn distributed representations, which provides the model with strong expressiveness for capturing enough of the complexity of interest from image features. The sparsity constraints are also incorporated to ameliorate the model. Experiment results in two age datasets show remarkable advantages of the proposed SCE-LDL model over the previous proposed age estimation methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategic Decision-Making Learning from Label Distributions: An Approach for Facial Age Estimation

Nowadays, label distribution learning is among the state-of-the-art methodologies in facial age estimation. It takes the age of each facial image instance as a label distribution with a series of age labels rather than the single chronological age label that is commonly used. However, this methodology is deficient in its simple decision-making criterion: the final predicted age is only selected...

متن کامل

Learning with Ambiguous Label Distribution for Apparent Age Estimation

Annotating age classes for humans’ facial images according to their appearance is very challenging because of dynamic personspecific ageing pattern, and thus leads to a set of unreliable apparent age labels for each image. For utilising ambiguous label annotations, an intuitive strategy is to generate a pseudo age for each image, typically the average value of manually-annotated age annotations...

متن کامل

Semi-Supervised Adaptive Label Distribution Learning for Facial Age Estimation

Lack of sufficient training data with exact ages is still a challenge for facial age estimation. To deal with such problem, a method called Label Distribution Learning (LDL) was proposed to utilize the neighboring ages while learning a particular age. Later, an adaptive version of LDL called ALDL was proposed to generate a proper label distribution for each age. However, the adaptation process ...

متن کامل

Label Distribution Learning Forests

Label distribution learning (LDL) is a general learning framework, which assigns a distribution over a set of labels to an instance rather than a single label or multiple labels. Current LDL methods have either restricted assumptions on the expression form of the label distribution or limitations in representation learning. This paper presents label distribution learning forests (LDLFs) a novel...

متن کامل

Estimation of Generalized Multisensor

| This paper attacks the problem of generalized multisensor mixture estimation. A distribution mixture is said to be generalized when the exact nature of components is not known, but each of them belongs to a nite known set of families of distributions. Estimating such a mixture entails a supplementary diiculty: one must label, for each class and each sensor, the exact nature of the correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016